After this documentation was released in July 2003, I was approached by Prentice Hall and asked to write a book on the Linux VM under the Bruce Peren's Open Book Series.

The book is available and called simply "Understanding The Linux Virtual Memory Manager". There is a lot of additional material in the book that is not available here, including details on later 2.4 kernels, introductions to 2.6, a whole new chapter on the shared memory filesystem, coverage of TLB management, a lot more code commentary, countless other additions and clarifications and a CD with lots of cool stuff on it. This material (although now dated and lacking in comparison to the book) will remain available although I obviously encourge you to buy the book from your favourite book store :-) . As the book is under the Bruce Perens Open Book Series, it will be available 90 days after appearing on the book shelves which means it is not available right now. When it is available, it will be downloadable from http://www.phptr.com/perens so check there for more information.

To be fully clear, this webpage is not the actual book.
next up previous contents index
Next: 7. Physical Page Allocation Up: 6. Boot Memory Allocator Previous: 6.4 Freeing Memory   Contents   Index


6.5 Retiring the Boot Memory Allocator

Late in the bootstrapping process, the function start_kernel() is called which knows it is safe to remove the boot allocator and all its associated data structures. Each architecture is required to provide a function mem_init() that is responsible for destroying the boot memory allocator and its associated structures.

Figure 6.3: Call Graph: mem_init()
\includegraphics[width=15cm]{graphs/mem_init.ps}

The purpose of the function is quite simple. It is responsible for calculating the dimensions of low and high memory and printing out an informational message to the user as well as performing final initialisations of the hardware if necessary. On the x86, the principal function of concern for the VM is the free_pages_init().

This function first tells the boot memory allocator to retire itself by calling free_all_bootmem() for UMA architectures or free_all_bootmem_node() for NUMA. Both call the core function free_all_bootmem_core() with different parameters. The core function is simple in principle and performs the following tasks:

At this stage, the buddy allocator now has control of all the pages in low memory which leaves only the high memory pages. The remainder of the free_pages_init() function is responsible for those. After free_all_bootmem() returns, it first counts the number of reserved pages for accounting purposes and then calls the function one_highpage_init() for every page between highstart_pfn and highend_pfn.

This function simple clears the PG_reserved flag, sets the PG_highmem flag, sets the count to 1 and calls __free_pages() to release it to the buddy allocator in the same manner free_all_bootmem_core() did.

At this point, the boot memory allocator is no longer required and the buddy allocator is the main physical page allocator for the system. An interesting feature to note is that not only is the data for the boot allocator removed but also the code. All the init function declarations used for bootstrapping the system are marked __init such as the following;

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On the x86, the function free_initmem() walks through all pages from __init_begin to __init_end and frees up the pages to the buddy allocator. With this method, Linux can free up a considerable amount of memory6.3that is used by bootstrapping code that is no longer required.


Footnotes

... memory6.3
27 pages were freed while booting the kernel running on the machine this document is composed on.

next up previous contents index
Next: 7. Physical Page Allocation Up: 6. Boot Memory Allocator Previous: 6.4 Freeing Memory   Contents   Index
Mel 2004-02-15